ability of the geologic repository to isolate the waste during the next 100,000 years. - (2) Geochemical conditions that promote the precipitation, diffusion into the rock matrix, or sorption of radionuclides; inhibit the formation of particulates, colloids, inorganic complexes, or organic complexes that increase the mobility of radionuclides; or inhibit the transport of radionuclides by particulates, colloids, or complexes. - (3) Mineral assemblages that, when subjected to expected repository conditions, would remain unaltered or would alter to mineral assemblages with equal or increased capability to retard radionuclide transport. - (4) A combination of expected geochemical conditions and a volumetric flow rate of water in the host rock that would allow less than 0.001 percent per year of the total radionuclide inventory in the repository at 1,000 years to be dissolved. - (5) Any combination of geochemical and physical retardation processes that would decrease the predicted peak cumulative releases of radionuclides to the accessible environment by a factor of 10 as compared to those predicted on the basis of ground-water travel time without such retardation. - (c) Potentially adverse conditions. (1) Ground-water conditions in the host rock that could affect the solubility or the chemical reactivity of the engineered-barrier system to the extent that the expected repository performance could be compromised. - (2) Geochemical processes or conditions that could reduce the sorption of radionuclides or degrade the rock strength. - (3) Pre-waste-emplacement ground-water conditions in the host rock that are chemically oxidizing. ## §960.4-2-3 Rock characteristics. (a) Qualifying condition. The present and expected characteristics of the host rock and surrounding units shall be capable of accommodating the thermal, chemical, mechanical, and radiation stresses expected to be induced by repository construction, operation, and closure and by expected interactions among the waste, host rock, ground water, and engineered compo- nents. The characteristics of and the processes operating within the geologic setting shall permit compliance with (1) the requirements specified in §960.4–1 for radionuclide releases to the accessible environment and (2) the requirements set forth in 10 CFR 60.113 for radionuclide releases from the engineered-barrier system using reasonably available technology. - (b) Favorable Conditions. (1) A host rock that is sufficiently thick and laterally extensive to allow significant flexibility in selecting the depth, configuration, and location of the underground facility to ensure isolation. - (2) A host rock with a high thermal conductivity, a low coefficient of thermal expansion, or sufficient ductility to seal fractures induced by repository construction, operation, or closure or by interactions among the waste, host rock, ground water, and engineered components. - (c) Potentially adverse conditions. (1) Rock conditions that could require engineering measures beyond reasonably available technology for the construction, operation, and closure of the repository, if such measures are necessary to ensure waste containment or isolation. - (2) Potential for such phenomena as thermally induced fractures, the hydration or dehydration of mineral components, brine migration, or other physical, chemical, or radiation-related phenomena that could be expected to affect waste containment or isolation. - (3) A combination of geologic structure, geochemical and thermal properties, and hydrologic conditions in the host rock and surrounding units such that the heat generated by the waste could significantly decrease the isolation provided by the host rock as compared with pre-waste-emplacement conditions. ## § 960.4-2-4 Climatic changes. (a) Qualifying condition. The site shall be located where future climatic conditions will not be likely to lead to radionuclide releases greater than those allowable under the requirements specified in § 960.4–1. In predicting the likely future climatic conditions at a site, the DOE will consider the global, regional,